skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boswell, Matt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study systematically investigates the magnetic properties of the layered ferromagnet MnPt5As under pressure through a combination of experimental measurements and theoretical simulations. MnPt5As exhibits a ferromagnetic transition at approximately 301 K. Neutron diffraction measurements under applied pressures up to ∼4.9 GPa were performed over a temperature range from 320 to 100 K to probe its magnetic behavior. The results confirm that the Mn atoms maintain a ferromagnetic order under applied pressures, consistent with the ambient-pressure findings. However, magnetic anisotropy is notably suppressed. To further elucidate the compressibility of magnetic anisotropy in MnPt5As, x-ray diffraction under pressure was conducted. The results reveal that the c-axis undergoes a greater and more rapid compression compared to the ab-plane, which may contribute to the observed suppression of Mn ferromagnetic ordering along the c-axis. Additionally, theoretical calculations indicate that magnetic ordering exhibits a similar pressure-induced trend under applied pressure, supporting the experimental observations. These findings offer insights into the pressure-dependent magnetic properties and anisotropy of MnPt5As, with potential implications for strain engineering in Mn-based magnetic devices. 
    more » « less
  2. Abstract Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations—to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo‐interacting topological antiferromagnet is reported in the vdW 5felectron system UOTe. It has a high antiferromagnetic (AFM) transition temperature of 150 K, with a unique AFM configuration that breaks the combined parity and time reversal (PT) symmetry in an even number of layers while maintaining zero net magnetic moment. This angle‐resolved photoemission spectroscopy (ARPES) measurements reveal Dirac bands near the Fermi level, which combined with the theoretical calculations demonstrate UOTe as an AFM Dirac semimetal. Within the AFM order, the presence of the Kondo interaction is observed, as evidenced by the emergence of a 5fflat band near the Fermi level below 100 K and hybridization between the Kondo band and the Dirac band. The density functional theory calculations in its bilayer form predict UOTe as a rare example of a fully‐compensated AFM Chern insulator. 
    more » « less